PEAK Enginee P.O. Box 2381	Phone: (808) 264-7214 Email: dustin.dipersia@gmai			I.com		
	-					
Name:	Don Bell Signs					DEAL
Project:	City of South Daytona (22008)	· · · · · · · · · · · · · · · · · · ·				ENGINEEDING & CONSTRUC
Description:	Column / Pole Design and Fo		-			CONSULTING
Specifications	: 1. 2020 Florida Building Code	, 7th Edition	9. ASTM 6053	, 6061-T6 Str	uctural Alumii	num Tubing, F _y = 20 ksi min.
	2. ACI 318-08, ASCE 7-16	10. ASTM A53, Grade B, Type E or S, Structural Piping, $F_y = 35$ ksi				
	3. ASTM F1554 Grade 36, AST	11. Rebar, Grade 60 for #6 or Larger, Grade 40 for #5 or Smaller				
	(Heavy Hex on Bottom, not	12. ASTM A992 / A572 Grade 50 - Standard I-Beams, $F_y = 50$ ksi				
	4. ASTM A36 Structural Steel		13. ASTM A30	7 Carbon Ste	el Bolts & Stu	ds
	5. ASTM A325 Connection Bo	lts, Snug Tight	14. ASTM C-9	20 Elastomer	ic Joint Sealan	t
	6. ASTM A500 Grade B, Struc	tural Steel Tubing, F _y = 46 ksi	15. Digital Sig	natures (F.A.0	C. 61G15-23.0	04): This item has been electronically
	7. ASTM A449 Hex Cap Screw	s, Bolts & Studs, Steel, Heat	signed and s	sealed by Dustin	DiPersia, PE, on t	this date using a Digital Signature.
	Treated, Fy = 120, 105, 90	minimum	Printed copi	es of this docum	ent are not cons	idered signed and sealed and the
	8. Will comply with National E	lectrical Coded (NEC) 2017	signature m	ust be verified o	n any electronic o	copies.
Assumption:	1. Design Wind Speed, V _{ult} =	140 mph Per 2020 FE	C Wind Maps			Scope of Work: (1)
	2. Concrete Strength, f _c ' =	3000 psi min. compr	essive strength			(2) Four-sided Gateway Entry sign w/ lighting (TBD)
	3. Wind Loads Per =	ASCE 7-16				NOTES: All hardware to be non-corrosive.
	4. Wind Exposure =	C Verify in Fie	ld			2017
	a) Z _g =	900 ASCE 7-16				6'-4"+/-
	B) α=	9.5 ASCE 7-16				1'-10"
	C) K _d =	0.85 ASCE 7-16				<i>‡</i>
	5. Risk Category =	II MRI = 900 y				2.4 1/2*+-
	a) I =	1.00 ASCE 7-16,		_	_	
	6. Columns / Pipes =	4.50" O.D. X 0.25", f _y =	29.1 ksi - (6061-T6 Alum	ninum	3.2.172 6. 6. 172
	a) d =	0.250 in				HTWOS 3
	b) O.D. =	4.500 in		4		, ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	c) I.D. =	4.000 in f) # Colu		4	224.45.11	17.2"
	d) $S_{act} =$		= 204.15 lbs	X 4 =	204.15 lbs	2
	e) Weight =	3.93 lbs / ft		tal Weight =	204.15 lbs	6.5
	7. Sign Dimensions =	Height (ft) Width (ft)	Area (ft²)	Each	Area _T (ft ²)	
	a) Adv. Cabinet1			1	52.00	
	b) Adv. Cabinet2		_	1	0.00	+ lol - lol -
	c) Adv. Cabinet3	= 0.00 0.0		1	0.00	Grade 60 77
		11.21.347.2.1.1.711.76.23		tal Area =	Area = 52.00 ft2	i jarin ka
	8. Sign Weight =	Unit Weight (lb/ft²)	Weight (lbs)			
	a) Adv. Cabinet1		= 156.00			
	b) Adv. Cabinet2		= 0.00			(2) GATEWAY SIGNS Front El
	c) Adv. Cabinet3		= 0.00			2000 demonstrativos es
	9. Soil must be verified by sig	Total Weight		mntion that t	ho soil	
		um of 2200 psf and sides of 20		•		Footing Option:
	I	earing capacity of the soil, it is		•	=	2'-0" Diameter Footing
		car 6 capacity of the son, it is			. ~ .	

performed before sign installation. (Field Verify)

ENGINEERING & CONSTRUCTION

CONSULTING

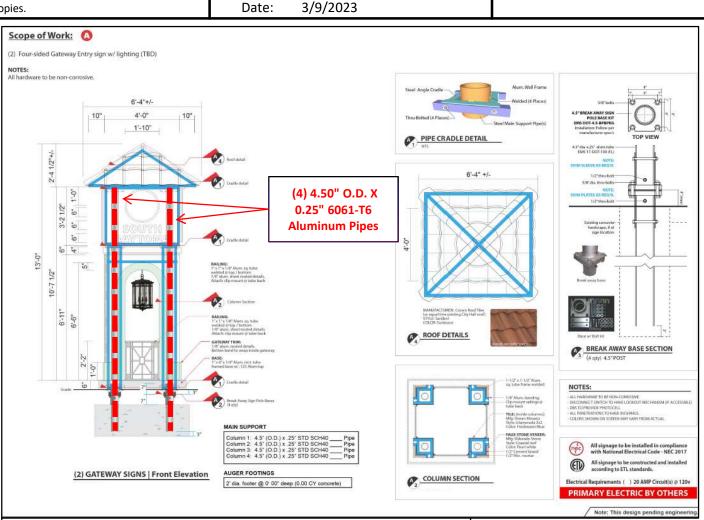
CERTIFICATION: To the best of my knowledge, I certify this analysis meets structural requirements of: 2020 Florida Building Code, 7th Edition

LIMITATION: Valid for two (2) signs, at specified location. In case of conflict, structural equirements, scope of work, and installer, mfg, owner responsibilities control.

THIS SEAL FOR STRUCTURAL ONLY DUSTIN DIPERSIA, P.E. FL 77276 CERTIFICATE OF AUTHORIZATION: 33209 Printed Date: 3/9/2023 Dustin DiPersia, P.E. Drawn By: Checked By: Dustin DiPersia, P.E.

Special Notes:

1.Sign Location: US 1,


South Daytona, FL

2. Column Specs 1: 4.50" O.D. X 0.25", fy = 29.1 ksi - 6061-T6 Aluminum

3. Requ. Foot. Size = 2.00 ft dia. @ 3.25 ft depth

4. Assumed soil bearing capacity = sides = 200 psf per foot depth (Field Verify)

Signature: 3/9/2023

Footing Option:

2'-0" Diameter Footing @ 3'-3" (1.70 CU YDS Concrete)

NOT TO SCALE

Drawing Sheet S-1

PEAK Engineering & Construction Consulting. LLC

P.O. Box 238121, Port Orange, FL 32123-8121

2. ACI 318-08, ASCE 7-16

ASTM A36 Structural Steel

3. ASTM F1554 Grade 36, ASTM A307 Anchor Bolts,

6. ASTM A500 Grade B, Structural Steel Tubing, F_v = 46 ksi

7. ASTM A449 Hex Cap Screws, Bolts & Studs, Steel, Heat

8. Will comply with National Electrical Coded (NEC) 2017

(Heavy Hex on Bottom, not "L" bolts, UNO)

5. ASTM A325 Connection Bolts, Snug Tight

Treated, Fy = 120, 105, 90 minimum

Phone: (808) 264-7214 Email: dustin.dipersia@gmail.com

Name: Don Bell Signs Project: City of South Daytona (2200807) - Gateway Entry Sign Description: **Additional Details** Specifications: 1. 2020 Florida Building Code, 7th Edition

ENGINEERING & CONSTRUCTION
— CONSULTING —

8. ASTM 6053, 6061-T6 Structural Aluminum Tubing, $F_v = 20$ ksi min.

9. ASTM A53, Grade B, Type E or S, Structural Piping, F_v = 35 ksi

10. Rebar, Grade 60 for #6 or Larger, Grade 40 for #5 or Smaller

11. ASTM A992 / A572 Grade 50 - Standard I-Beams, $F_v = 50 \text{ ksi}$

12. ASTM A307 Carbon Steel Bolts & Studs

13. ASTM C-920 Elastomeric Joint Sealant

14. Digital Signatures (F.A.C. 61G15-23.004): This item has been electronically signed and sealed by Dustin DiPersia, PE, on this date using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

CERTIFICATION: To the best of my knowledge, I certify this analysis meets structural requirements of: 2020 Florida Building Code, 7th Edition

LIMITATION: Valid for two (2) signs, at specified location. In case of conflict, structural equirements, scope of work, and installer, mfg, owner responsibilities control.

THIS SEAL FOR STRUCTURAL ONLY Printed Date: 3/9/2023 DUSTIN DIPERSIA, P.E. FL 77276 Dustin DiPersia, P.E. Drawn By: CERTIFICATE OF AUTHORIZATION: 33209 Checked By: Dustin DiPersia, P.E.

Special Notes:

1.Sign Location: US 1,

South Daytona, FL

2. Column Specs: 4.50" O.D. X 0.25", fy = 29.1 ksi - 6061-T6 Aluminum

2.00 ft dia. @ ######### 3. Requ. Foot. Size = 4. Assumed soil bearing capacity = 2200.00 psf,

sides = 200 psf per foot depth (Field Verify)

Signature:

3/9/2023 Date:

Details:

NOT TO SCALE

Drawing Sheet S-2

PEAK Engineering & Construction Consulting. LLC Phone: (808) 264-7214 P.O. Box 238121, Port Orange, FL 32123-8121 Email: dustin.dipersia@gmail.com Name: Don Bell Signs Project: City of South Daytona (2200807) - Gateway Entry Sign **Additional Details** Description: Specifications: 1. 2020 Florida Building Code, 7th Edition 2. ACI 318-08, ASCE 7-16

3. ASTM F1554 Grade 36, ASTM A307 Anchor Bolts,

6. ASTM A500 Grade B, Structural Steel Tubing, F, = 46 ksi

7. ASTM A449 Hex Cap Screws, Bolts & Studs, Steel, Heat

(Heavy Hex on Bottom, not "L" bolts, UNO)

5. ASTM A325 Connection Bolts, Snug Tight

Treated, Fy = 120, 105, 90 minimum

ASTM A36 Structural Steel

8. ASTM 6053, 6061-T6 Structural Aluminum Tubing, $F_v = 20$ ksi min.

9. ASTM A53, Grade B, Type E or S, Structural Piping, F, = 35 ksi

10. Rebar, Grade 60 for #6 or Larger, Grade 40 for #5 or Smaller

11. ASTM A992 / A572 Grade 50 - Standard I-Beams, $F_v = 50 \text{ ksi}$

12. ASTM A307 Carbon Steel Bolts & Studs

13. ASTM C-920 Elastomeric Joint Sealant

14. Digital Signatures (F.A.C. 61G15-23.004): This item has been electronically signed and sealed by Dustin DiPersia, PE, on this date using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

CERTIFICATION: To the best of my knowledge, I certify this analysis meets structural requirements of: 2020 Florida Building Code, 7th Edition

LIMITATION: Valid for two (2) signs, at specified location. In case of conflict, structural equirements, scope of work, and installer, mfg, owner responsibilities control

THIS SEAL FOR STRUCTURAL ONLY DUSTIN DIPERSIA, P.E. FL 77276 CERTIFICATE OF AUTHORIZATION: 33209

Printed Date: 3/9/2023 Dustin DiPersia, P.E. Drawn By: Checked By: Dustin DiPersia, P.E.

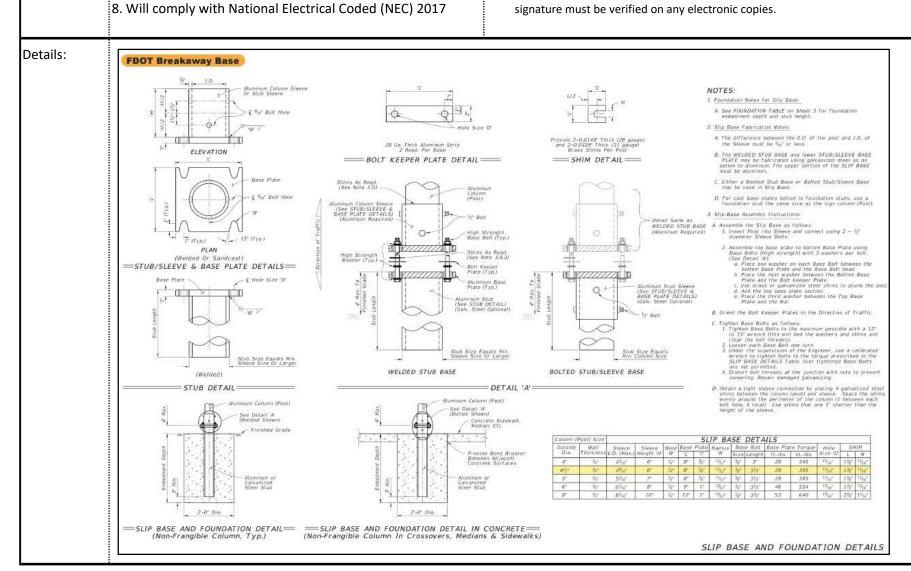
Special Notes:

1.Sign Location: US 1,

South Daytona, FL

2. Column Specs: 4.50" O.D. X 0.25", fy = 29.1 ksi - 6061-T6 Aluminum

2.00 ft dia. @ ######### 3. Requ. Foot. Size = Assumed soil bearing capacity = 2200.00 psf,


sides = 200 psf per foot depth (Field Verify)

Signature:

ENGINEERING & CONSTRUCTION

CONSULTING

3/9/2023 Date:

Drawing Sheet S-3

NOT TO SCALE

PEAK Engineering & Construction Consulting, LLC			Phone: (808) 264-72		
P.O. Box 238121,	, Port Orange, FL 32123-8121		Email: dustin.dipers	sia@gmail.com	
Name:	Don Bell Signs			ĎE	
Project:	City of South Daytona (220)	0807) - Gateway Entry Sig	ŗn		AN
Description:	Calculate Wind Loads			ENGINEERING & === c o n s	CONSTRUCTION
•	: 1. Sign Height, H, Z & s =	13.00 ft			
J	2. Width, B =	4.00 ft			
	3. Height off Ground, h =	0.00 ft if h = 0, s	= h		
nalysis:	1. Wind Loads, ASCE 7-16	,			
•	>Wind Force				
	a) Velocity Pressure, VP =	0.00256 <i>x Kz x Kzt x</i>	$Kd \times V^2 \times I$, where	K_z = velocity pressure exposure coefficient =	0.8
	-			K _{zt} = topographic speed up factor =	1.00
				K _d = wind directional factor =	0.85
				V = wind velocity	140 mpl
				I = Importance Factor =	1.00
	5-n-7 (45 ft)	$K_{-} = 2.01(\frac{15}{-})^{2/\alpha}$		importance ractor	1.0
	FOR Z < 15 IU:	$K_z = 2.01(\frac{15}{Z_g})^{2/\alpha}$		7 height above groundlavel	
			, where	Z = height above ground level	
		$Z \sim 2/2$		$Z_g \& \alpha = terrain exposure constants$	
	For $15 \le Z \le Z_g$:	$K_z = 2.01 \left(\frac{Z}{Z_g}\right)^{2/\alpha}$		(ASCE 7-16)	
	Therefore	Velocity Pressure =	36.20 psi	f	
	b) Factored Wind Pressure	$e, WP = VP x G x C_f, wh$	ere	G = gust-effect factor (0.85 for rigid struct) =	0.8
				(otherwise use Equ. 26.9-6, ASCE 7-16)	
				C_f = force coeff (Fig. 29.4-1, ASCE 7-16) =	1.7
				a) aspect ratio = B/s =	0.3
				b) clearance ration = s/h =	1.0
	Therefore	Factored Wind Pressure	e = 52.32 psf		
	c) Wind Force, WF = WP	$\mathbf{P} \times \mathbf{A} \times \frac{x^2}{\mathbf{W}}$ where		$x = 2/3 \times L = 8.67 \text{ ft}$	
	c) Wind Force, WF =	L^{2} , where		A = area of sign =	52.00
	Therefore	Wind Force (Shear Force	<u> </u>	<mark></mark> -	
		Sign Weight (Axial Forc	e) = 360.15 lbs	<u> </u>	
	>Moment At Grade				
		h, where		h = moment arm = 0.5H =	6.50 f
	Therefore	Moment at Sign Botton	n = 10.20 kips-ft		
	2. Sign Column Bending, S	(Section Modulus)			
	S = M			M = Moment = 10.20 kips-1	F+
	$\overline{f_h x N}$	IC		·	
	$\int_{b} x N$	V C		f_b = yield strength = 29.1 ks NC = # of Columns = 4.0	
	Thoustons	Danding C -	4.054.5.2		U
	Therefore	Bending, S _{req} =	1.051 in3		
	Tl f	Bending, S _{act} =		Data Taken From Machinery Handbook	
	Therefore	Sact < Sreq	(OK)	<u> </u>	
	Pipe Size =	4.500 in X	0.2500 in	Rd. Aluminum Pipe, S = 3.3611 in3	

CERTIFICATION: To the best of my knowledge, I certify this analysis meets structural requirements of: 2020 Florida Building Code, 7th Edition

LIMITATION: Valid for two (2) signs, at specified location. In case of conflict, structural requirements, scope of work, and installer, mfg, owner responsibilities control.

THIS SEAL FOR STRUCTURAL ONLY
DUSTIN DIPERSIA, P.E. FL 77276
CERTIFICATE OF AUTHORIZATION: 33209

Printed Date: 3/9/2023

Drawn By: Dustin DiPersia, P.E.

Checked By: Dustin DiPersia, P.E.

Special Notes:

1.Sign Location: US 1,

South Daytona, FL

2. Column Specs 1: 4.50" O.D. X 0.25", fy = 29.1 ksi - 6061-T6 Aluminum

3. Requ. Foot. Size = 2.00 ft dia. @ 3.25 ft depth 4. Assumed soil bearing capacity = 2200.00 psf,

sides = 200 psf per foot depth (Field Verify)

Signature:

Date: 3/9/2023

Note: Digital Signatures (F.A.C. 61G15-23.004): This item has been electronically signed and sealed by Dustin DiPersia, PE, on this date using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

NOT TO SCALE Drawing Sheet S-4

		Construction Consulting, LLC		Phone: (808) 264-7214			
P.O. Box 238121	1, Port Orange, FL 32123-8121		Email: dustin.	dipersia@gmail.com			
Name:	Don Bell Signs						
Project:	City of South Daytona (2200)807) - Gateway Entry (Sign		JEAK-		
Description:	Footing Design for Monum			ENGINEERING & CONSTRUCTION CONSULTING			
Assumptions:	1. Unit Weight, Γ _{SAND} =	105.00 lbs / ft3					
•	2. Friction Angle, φ =	30 degrees					
	3. Soil Bearing Capacity, q _s						
	4. Factor of Safety =	3.00					
	1. Broms Method						
Analysis:	> Shear Force	$V_x = WF \frac{x^2}{L^2}$, whe	ere	W = Total Wind Force =	1209.07 lbs		
•		$L^{2\prime}$		$x = \frac{2}{3} x L =$	8.67		
				L = Total Height of Sign =	13.00		
	Therefore	V _x =	537.37 lbs / 4 Columns =	134.34 lbs	S		
		2Wr(o±1)			Ī		
	> Diameter, D =	$D = \frac{2Vx(e+L)}{\Gamma L^3 K_n}, \text{ wh}$	ere	Diameter of Footing, D =	2.00 ft		
		$1LK_p$		Shear Wind Force, V _x =	134.34 lbs		
				Moment Arm, e =	6.50 ft		
				Requ. Embedment Depth, L _R =	3.25 ft		
				Exist Embed Depth, L _E =	N/A		
				Unit Weight of Sand, Γ =	105.00 lbs / ft3		
				Passive Earth Coef., Kp =			
	Therefore	Required Dia. =	2.00 ft	$K_p = 1 - sin\emptyset =$	0.5		
		Exist. Dia. =	N/A	Depth Check =	ОК		
	Therefore	Footing Depth =	3.25 ft				
		Footing Diameter =	2.00 ft	_			
		Volume of Concrete	= 1.66 CU YDS	X 145 lbs / ft ³ =	6514.11 lbs		
					1		
	> Bearing Pressure						
	$q_{actual} = \frac{V}{V}$	$V_{TOTAL} + \Pi r^2 X d X \Gamma_c$	where $W_{TOTAL} = W_{SIGNI}$	+ W _{FOOTING} + W _{POLES} =	1718.56 lbs		
	iactuai	Πr^2	TOTAL SIGN	r =	1.00 ft		
	q _{actual}	= 275.0 lbs / ft2		$\Gamma_{ m concrete} =$	145.00 pcf		
	q _{allowable} =	q _s [1+0.20(d-1)], w	here	Soil Bearing Capacity, q _s =	2200.0 lbs / ft2		
	q _{allowable}	= 1063.3 lbs / ft2					
	Therefore	q _{allowable} > q _{actual}	ОК				
	Footing Size =	2.00 ft dia. @ 3.25	5 ft depth				
	1 00 1118 3126 -	2.00 it dia. @ 3.2.	o it acptii				

FICATION: To the best of my knowledge, I certify this analysis meets structural ements of: 2020 Florida Building Code, 7th Edition

ATION: Valid for two (2) signs, at specified location. In case of conflict, structural ements, scope of work, and installer, mfg, owner responsibilities control.

THIS SEAL FOR STRUCTURAL ONLY DUSTIN DIPERSIA, P.E. FL 77276 TIFICATE OF AUTHORIZATION: 33209

Printed Date: 3/9/2023 Dustin DiPersia, P.E. Drawn By: Checked By: Dustin DiPersia, P.E.

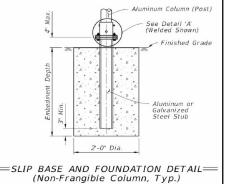
Special Notes:

1.Sign Location: US 1,

South Daytona, FL

2. Column Specs 1: 4.50" O.D. X 0.25", fy = 29.1 ksi - 6061-T6 Aluminum

3. Foot. Size = 2.00 ft dia. @ 3.25 ft depth


2200.00 psf,

4. Assumed soil bearing capacity = sides = 200 psf per foot depth (Field Verify)

ure:

ate: 3/9/2023

ing Options:

quired Footing Option:

0" Diameter Footing @ 3'-3" (1.70 CU YDS Concrete)

1. In the event utilities are encountered during footing excavation/installation, stop work immediately & notify the engineer.

- 2. In the event utilities are encountered, there will be two options:
 - a. Bottom of footing to be 3'-6" min. (horizontal distance) from top of pipe(s).
 - b. Concrete encase utilities according to engineer's recommendation.
- 3. In the event construction debris andor other delitarious material encountered during footing excavation/insatllation, stop work immediately & notify the engineer.
- 4. Refer to 9. on S-1 for soil bearing capacity requirements. Soil must be capacted to RC = 98% min. around footing to extent 4' beyond footing diameter.
- 5. Concrete Volume calculations are based on neatline footings. Additional concrete may be necessary. Contractor will need to verify actual concrete volumes required.
- 6. In the event the footing to be hand dug and, therefore; the diameter is an approximation & not an exact shape.
- 7. Digital Signatures (F.A.C. 61G15-23.004): This item has been electronically signed and sealed by Dustin DiPersia, PE, on this date using a Digital Signature. Printed copies of this document are not considered signed and sealed Drawing Sheet S-5 and the signature must be verified on any electronic copies.